Precision measurement and compensation of optical stark shifts for an ion-trap quantum processor.
نویسندگان
چکیده
Using optical Ramsey interferometry, we precisely measure the laser-induced ac-Stark shift on the S(1/2)-D(5/2) "quantum bit" transition near 729 nm in a single trapped 40Ca+ ion. We cancel this shift using an additional laser field. This technique is of particular importance for the implementation of quantum information processing with cold trapped ions. As a simple application we measure the atomic phase evolution during a n x 2 pi rotation of the quantum bit.
منابع مشابه
Precision spectroscopy of polarized molecules in an ion trap.
Polar molecules are desirable systems for quantum simulations and cold chemistry. Molecular ions are easily trapped, but a bias electric field applied to polarize them tends to accelerate them out of the trap. We present a general solution to this issue by rotating the bias field slowly enough for the molecular polarization axis to follow but rapidly enough for the ions to stay trapped. We demo...
متن کاملTheory of magic optical traps for Zeeman-insensitive clock transitions in alkali-metal atoms
Precision measurements and quantum-information processing with cold atoms may benefit from trapping atoms with specially engineered, “magic” optical fields. At the magic trapping conditions, the relevant atomic properties remain immune to strong perturbations by the trapping fields. Here we develop a theoretical analysis of magic trapping for especially valuable Zeeman-insensitive clock transit...
متن کاملNondestructive light-shift measurements of single atoms in optical dipole traps
We measure the ac Stark shifts of the 5S1/2,F = 2 → 5P3/2,F ′ = 3 transitions of individual optically trapped 87Rb atoms using a nondestructive detection technique that allows us to measure the fluorescent signal of one and the same atom for over 60 s. These measurements allow the efficient and rapid characterization of single-atom traps that is required for many coherent quantum information pr...
متن کاملQuantum information processing and cavity QED experiments with trapped Ca+ ions
Single trapped Ca ions, stored in a linear Paul trap and laser–cooled to the ground state of their harmonic quantum motion are used for quantum information processing. As a demonstration, composite laser pulse sequences were used to implement phase gate and CNOT gate operation. For this, Stark shifts on the qubit transitions were precisely measured and compensated. With a single ion stored insi...
متن کاملDouble-well atom trap for fluorescence detection at the Heisenberg limit
We experimentally demonstrate an atom number detector capable of simultaneous detection of two mesoscopic ensembles with single-atom resolution. Such a sensitivity is a prerequisite for quantum metrology at a precision approaching the Heisenberg limit. Our system is based on fluorescence detection of atoms in a hybrid trap in which a dipole barrier divides a magneto-optical trap into two separa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 90 14 شماره
صفحات -
تاریخ انتشار 2003